Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474427

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is manifested by hepatic steatosis, insulin resistance, hepatocyte death, and systemic inflammation. Obesity induces steatosis and chronic inflammation in the liver. However, the precise mechanism underlying hepatic steatosis in the setting of obesity remains unclear. Here, we report studies that address this question. After 14 weeks on a high-fat diet (HFD) with high sucrose, C57BL/6 mice revealed a phenotype of liver steatosis. Transcriptional profiling analysis of the liver tissues was performed using RNA sequencing (RNA-seq). Our RNA-seq data revealed 692 differentially expressed genes involved in processes of lipid metabolism, oxidative stress, immune responses, and cell proliferation. Notably, the gene encoding neutral sphingomyelinase, SMPD3, was predominantly upregulated in the liver tissues of the mice displaying a phenotype of steatosis. Moreover, nSMase2 activity was elevated in these tissues of the liver. Pharmacological and genetic inhibition of nSMase2 prevented intracellular lipid accumulation and TNFα-induced inflammation in in-vitro HepG2-steatosis cellular model. Furthermore, nSMase2 inhibition ameliorates oxidative damage by rescuing PPARα and preventing cell death associated with high glucose/oleic acid-induced fat accumulation in HepG2 cells. Collectively, our findings highlight the prominent role of nSMase2 in hepatic steatosis, which could serve as a potential therapeutic target for NAFLD and other hepatic steatosis-linked disorders.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Esfingomielina Fosfodiesterase , Camundongos Endogâmicos C57BL , Inflamação , Obesidade/metabolismo , Esterases
2.
Front Endocrinol (Lausanne) ; 15: 1265799, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414818

RESUMO

Introduction: A high-fat/high-sucrose diet leads to adverse metabolic changes that affect insulin sensitivity, function, and secretion. The source of fat in the diet might inhibit or increase this adverse effect. Fish oil and cocoa butter are a significant part of our diets. Yet comparisons of these commonly used fat sources with high sucrose on pancreas morphology and function are not made. This study investigated the comparative effects of a fish oil-based high-fat/high-sucrose diet (Fish-HFDS) versus a cocoa butter-based high-fat/high-sucrose diet (Cocoa-HFDS) on endocrine pancreas morphology and function in mice. Methods: C57BL/6 male mice (n=12) were randomly assigned to dietary intervention either Fish-HFDS (n=6) or Cocoa-HFDS (n=6) for 22 weeks. Intraperitoneal glucose and insulin tolerance tests (IP-GTT and IP-ITT) were performed after 20-21 weeks of dietary intervention. Plasma concentrations of c-peptide, insulin, glucagon, GLP-1, and leptin were measured by Milliplex kit. Pancreatic tissues were collected for immunohistochemistry to measure islet number and composition. Tissues were multi-labelled with antibodies against insulin and glucagon, also including expression on Pdx1-positive cells. Results and discussion: Fish-HFDS-fed mice showed significantly reduced food intake and body weight gain compared to Cocoa-HFDS-fed mice. Fish-HFDS group had lower fasting blood glucose concentration and area under the curve (AUC) for both GTT and ITT. Plasma c-peptide, insulin, glucagon, and GLP-1 concentrations were increased in the Fish-HFDS group. Interestingly, mice fed the Fish-HFDS diet displayed higher plasma leptin concentration. Histochemical analysis revealed a significant increase in endocrine pancreas ß-cells and islet numbers in mice fed Fish-HFDS compared to the Cocoa-HFDS group. Taken together, these findings suggest that in a high-fat/high-sucrose dietary setting, the source of the fat, especially fish oil, can ameliorate the effect of sucrose on glucose homeostasis and endocrine pancreas morphology and function.


Assuntos
Gorduras na Dieta , Ilhotas Pancreáticas , Leptina , Masculino , Camundongos , Animais , Glucagon , Sacarose/efeitos adversos , Óleos de Peixe/farmacologia , Peptídeo C , Camundongos Endogâmicos C57BL , Ilhotas Pancreáticas/metabolismo , Insulina , Glucose , Peptídeo 1 Semelhante ao Glucagon/metabolismo
3.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37894865

RESUMO

Obesity and metabolic syndrome involve chronic low-grade inflammation called metabolic inflammation as well as metabolic derangements from increased endotoxin and free fatty acids. It is debated whether the endoplasmic reticulum (ER) stress in monocytic cells can contribute to amplify metabolic inflammation; if so, by which mechanism(s). To test this, metabolic stress was induced in THP-1 cells and primary human monocytes by treatments with lipopolysaccharide (LPS), palmitic acid (PA), or oleic acid (OA), in the presence or absence of the ER stressor thapsigargin (TG). Gene expression of tumor necrosis factor (TNF)-α and markers of ER/oxidative stress were determined by qRT-PCR, TNF-α protein by ELISA, reactive oxygen species (ROS) by DCFH-DA assay, hypoxia-inducible factor 1-alpha (HIF-1α), p38, extracellular signal-regulated kinase (ERK)-1,2, and nuclear factor kappa B (NF-κB) phosphorylation by immunoblotting, and insulin sensitivity by glucose-uptake assay. Regarding clinical analyses, adipose TNF-α was assessed using qRT-PCR/IHC and plasma TNF-α, high-sensitivity C-reactive protein (hs-CRP), malondialdehyde (MDA), and oxidized low-density lipoprotein (OX-LDL) via ELISA. We found that the cooperative interaction between metabolic and ER stresses promoted TNF-α, ROS, CCAAT-enhancer-binding protein homologous protein (CHOP), activating transcription factor 6 (ATF6), superoxide dismutase 2 (SOD2), and nuclear factor erythroid 2-related factor 2 (NRF2) expression (p ≤ 0.0183),. However, glucose uptake was not impaired. TNF-α amplification was dependent on HIF-1α stabilization and p38 MAPK/p65 NF-κB phosphorylation, while the MAPK/NF-κB pathway inhibitors and antioxidants/ROS scavengers such as curcumin, allopurinol, and apocynin attenuated the TNF-α production (p ≤ 0.05). Individuals with obesity displayed increased adipose TNF-α gene/protein expression as well as elevated plasma levels of TNF-α, CRP, MDA, and OX-LDL (p ≤ 0.05). Our findings support a metabolic-ER stress cooperativity model, favoring inflammation by triggering TNF-α production via the ROS/CHOP/HIF-1α and MAPK/NF-κB dependent mechanisms. This study also highlights the therapeutic potential of antioxidants in inflammatory conditions involving metabolic/ER stresses.


Assuntos
NF-kappa B , Fator de Necrose Tumoral alfa , Humanos , Estresse do Retículo Endoplasmático , Glucose , Inflamação , NF-kappa B/metabolismo , Obesidade , Espécies Reativas de Oxigênio/metabolismo , Células THP-1 , Fator de Necrose Tumoral alfa/metabolismo
4.
Sci Rep ; 13(1): 14351, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658104

RESUMO

Studies have established the association between increased plasma levels of matrix metalloproteinase (MMP)-9 and adipose tissue inflammation. Tumor necrosis factor α (TNFα) was elevated in obesity and is involved in the induction of MMP-9 in monocytic cells. However, the underlying molecular mechanism was incompletely understood. As per our recent report, TNFα mediates inflammatory responses through long-chain acyl-CoA synthetase 1 (ACSL1). Therefore, we further investigated the role of ACSL1 in TNFα-mediated MMP-9 secretion in monocytic cells. THP-1 cells and primary monocytes were used to study MMP-9 expression. mRNA and protein levels of MMP-9 were determined by qRT-PCR and ELISA, respectively. Signaling pathways were studied using Western blotting, inhibitors, and NF-kB/AP1 reporter cells. We found that THP-1 cells and primary human monocytes displayed increased MMP-9 mRNA expression and protein secretion after incubation with TNFα. ACSL1 inhibition using triacsin C significantly reduced the expression of MMP-9 in the THP-1 cells. However, the inhibition of ß-oxidation and ceramide biosynthesis did not affect the TNFα-induced MMP-9 production. Using small interfering RNA-mediated ACSL1 knockdown, we further confirmed that TNFα-induced MMP-9 expression/secretion was significantly reduced in ACSL1-deficient cells. TNFα-mediated MMP-9 expression was also significantly reduced by the inhibition of ERK1/ERK2, JNK, and NF-kB. We further observed that TNFα induced phosphorylation of SAPK/JNK (p54/46), ERK1/2 (p44/42 MAPK), and NF-kB p65. ACSL1 inhibition reduced the TNFα-mediated phosphorylation of SAPK/JNK, c-Jun, ERK1/2, and NF-kB. In addition, increased NF-κB/AP-1 activity was inhibited in triacsin C treated cells. Altogether, our findings suggest that ACSL1/JNK/ERK/NF-kB axis plays an important role in the regulation of MMP-9 induced by TNFα in monocytic THP-1 cells.


Assuntos
NF-kappa B , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/farmacologia , Sistema de Sinalização das MAP Quinases , Metaloproteinase 9 da Matriz/genética , Coenzima A Ligases/genética
5.
Front Mol Biosci ; 10: 1218497, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484533

RESUMO

Heavy metals are the metal compounds found in earth's crust and have densities higher than that of water. Common heavy metals include the lead, arsenic, mercury, cadmium, copper, manganese, chromium, nickel, and aluminum. Their environmental levels are consistently rising above the permissible limits and they are highly toxic as enter living systems via inhalation, ingestion, or inoculation. Prolonged exposures cause the disruption of metabolism, altered gene and/or protein expression, and dysregulated metabolite profiles. Metabolomics is a state of the art analytical tool widely used for pathomolecular inv22estigations, biomarkers, drug discovery and validation of biotransformation pathways in the fields of biomedicine, nutrition, agriculture, and industry. Here, we overview studies using metabolomics as a dynamic tool to decipher the mechanisms of metabolic impairment related to heavy metal toxicities caused by the environmental or experimental exposures in different living systems. These investigations highlight the key role of metabolomics in identifying perturbations in pathways of lipid and amino acid metabolism, with a critical role of oxidative stress in metabolic impairment. We present the conclusions with future perspectives on metabolomics applications in meeting emerging needs.

6.
iScience ; 26(7): 107145, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37416456

RESUMO

Foamy and inflammatory macrophages play pathogenic roles in metabolic disorders. However, the mechanisms that promote foamy and inflammatory macrophage phenotypes under acute-high-fat feeding (AHFF) remain elusive. Herein, we investigated the role of acyl-CoA synthetase-1 (ACSL1) in favoring the foamy/inflammatory phenotype of monocytes/macrophages upon short-term exposure to palmitate or AHFF. Palmitate exposure induced a foamy/inflammatory phenotype in macrophages which was associated with increased ACSL1 expression. Inhibition/knockdown of ACSL1 in macrophages suppressed the foamy/inflammatory phenotype through the inhibition of the CD36-FABP4-p38-PPARδ signaling axis. ACSL1 inhibition/knockdown suppressed macrophage foaming/inflammation after palmitate stimulation by downregulating the FABP4 expression. Similar results were obtained using primary human monocytes. As expected, oral administration of ACSL1 inhibitor triacsin-C in mice before AHFF normalized the inflammatory/foamy phenotype of the circulatory monocytes by suppressing FABP4 expression. Our results reveal that targeting ACSL1 leads to the attenuation of the CD36-FABP4-p38-PPARδ signaling axis, providing a therapeutic strategy to prevent the AHFF-induced macrophage foaming and inflammation.

7.
Sci Rep ; 13(1): 10703, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400578

RESUMO

Toll-like receptors (TLRs) have been targeted for therapeutic drug development for several disorders, including cardiovascular diseases (CVD), and diabetes mellitus. Daily levels physical activity (PA) has been purported to influence the systemic circulation of cytokines, affecting the overall activation of TLRs and influencing the inflammatory milieu. Objective and self-reported daily PA was tracked in 69 normal-weight adults. Freedson's cut-offs categorized daily PA intensity into the 25th lowest, medium, and top percentiles. Monocytic TLR2 expression was quantified by flow cytometry in fresh whole blood. Cross-sectional associations between flow cytometry measured TLR2+ subsets and clinical biomarkers were evaluated. PA increased circulation of TLR2+ monocytes. TLR2 expression was adversely corelated with reduced diastolic blood pressure (DBP), triglyceride (TG), and matrix metallopeptidase 9 (MMP9) levels. However, regression analysis indicated that only TG levels were independently linked with TLR2+ subsets in circulation in active participants. Higher daily levels of physical activity are associated with improved cardiovascular blood markers and elevated circulatory monocytic TLR2+ subsets. These findings suggest that TLR2 may play a role in modulating CVD risk factors in individuals leading physically active lifestyles.


Assuntos
Exercício Físico , Receptor 2 Toll-Like , Adulto , Humanos , Estudos Transversais , Citocinas/metabolismo , Monócitos/metabolismo , Receptor 2 Toll-Like/metabolismo , Exercício Físico/fisiologia , Fatores de Risco de Doenças Cardíacas
8.
Front Immunol ; 14: 1195699, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377968

RESUMO

The liver is the site of first pass metabolism, detoxifying and metabolizing blood arriving from the hepatic portal vein and hepatic artery. It is made up of multiple cell types, including macrophages. These are either bona fide tissue-resident Kupffer cells (KC) of embryonic origin, or differentiated from circulating monocytes. KCs are the primary immune cells populating the liver under steady state. Liver macrophages interact with hepatocytes, hepatic stellate cells, and liver sinusoidal endothelial cells to maintain homeostasis, however they are also key contributors to disease progression. Generally tolerogenic, they physiologically phagocytose foreign particles and debris from portal circulation and participate in red blood cell clearance. However as immune cells, they retain the capacity to raise an alarm to recruit other immune cells. Their aberrant function leads to the development of non-alcoholic fatty liver disease (NAFLD). NAFLD refers to a spectrum of conditions ranging from benign steatosis of the liver to steatohepatitis and cirrhosis. In NAFLD, the multiple hit hypothesis proposes that simultaneous influences from the gut and adipose tissue (AT) generate hepatic fat deposition and that inflammation plays a key role in disease progression. KCs initiate the inflammatory response as resident immune effectors, they signal to neighbouring cells and recruit monocytes that differentiated into recruited macrophages in situ. Recruited macrophages are central to amplifying the inflammatory response and causing progression of NAFLD to its fibro-inflammatory stages. Given their phagocytic capacity and their being instrumental in maintaining tissue homeostasis, KCs and recruited macrophages are fast-becoming target cell types for therapeutic intervention. We review the literature in the field on the roles of these cells in the development and progression of NAFLD, the characteristics of patients with NAFLD, animal models used in research, as well as the emerging questions. These include the gut-liver-brain axis, which when disrupted can contribute to decline in function, and a discussion on therapeutic strategies that act on the macrophage-inflammatory axis.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Células Endoteliais/metabolismo , Macrófagos/metabolismo , Progressão da Doença
9.
Cells ; 11(24)2022 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-36552771

RESUMO

Steroid receptor RNA activator gene (SRA1) emerges as a player in pathophysiological responses of adipose tissue (AT) in metabolic disorders such as obesity and type 2 diabetes (T2D). We previously showed association of the AT SRA1 expression with inflammatory cytokines/chemokines involved in metabolic derangement. However, the relationship between altered adipose expression of SRA1 and the innate immune Toll-like receptors (TLRs) as players in nutrient sensing and metabolic inflammation as well as their downstream signaling partners, including interferon regulatory factors (IRFs), remains elusive. Herein, we investigated the association of AT SRA1 expression with TLRs, IRFs, and other TLR-downstream signaling mediators in a cohort of 108 individuals, classified based on their body mass index (BMI) as persons with normal-weight (N = 12), overweight (N = 32), and obesity (N = 64), including 55 with and 53 without T2D. The gene expression of SRA1, TLRs-2,3,4,7,8,9,10 and their downstream signaling mediators including IRFs-3,4,5, myeloid differentiation factor 88 (MyD88), interleukin-1 receptor-associated kinase 1 (IRAK1), and nuclear factor-κB (NF-κB) were determined using qRT-PCR and SRA1 protein expression was determined by immunohistochemistry. AT SRA1 transcripts' expression was significantly correlated with TLRs-3,4,7, MyD88, NF-κB, and IRF5 expression in individuals with T2D, while it associated with TLR9 and TRAF6 expression in all individuals, with/without T2D. SRA1 expression associated with TLR2, IRAK1, and IRF3 expression only in individuals with obesity, regardless of diabetes status. Furthermore, TLR3/TLR7/IRAK1 and TLR3/TLR9 were identified as independent predictors of AT SRA1 expression in individuals with obesity and T2D, respectively. Overall, our data demonstrate a direct association between the AT SRA1 expression and the TLRs together with their downstream signaling partners and IRFs in individuals with obesity and/or T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Receptor 3 Toll-Like , Humanos , Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Fatores Reguladores de Interferon/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Obesidade/genética , Obesidade/metabolismo , Receptor 3 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
11.
Cells ; 11(19)2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36231033

RESUMO

Chronic low-grade inflammation induced by obesity is a central risk factor for the development of metabolic syndrome. High low-density lipoprotein cholesterol (LDL-c) induces inflammation, which is a common denominator in metabolic syndrome. IL-23 plays a significant role in the pathogenesis of meta-inflammatory diseases; however, its relationship with LDL-c remains elusive. In this cross-sectional study, we determined whether the adipose tissue IL-23 expression was associated with other inflammatory mediators in people with increased plasma LDL-c concentrations. Subcutaneous adipose tissue biopsies were collected from 60 people, sub-divided into two groups based on their plasma LDL-c concentrations (<2.9 and ≥2.9 mmol/L). Adipose expression of IL-23 and inflammatory markers were determined using real-time qRT-PCR; plasma concentrations of total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-c) and LDL-c were determined using the standard method; and adiponectin levels were measured by enzyme-linked immunosorbent assay (ELISA). Adipose IL-23 transcripts were found to be increased in people with high LDL-c, compared to low LDL-c group (H-LDL-c: 1.63 ± 0.10-Fold; L-LDL-c: 1.27 ± 0.09-Fold; p < 0.01); IL-23 correlated positively with LDL-c (r = 0.471, p < 0.0001). Immunochemistry analysis showed that AT IL-23 protein expression was also elevated in the people with H-LDL-c. IL-23 expression in the high LDL-c group was associated with multiple adipose inflammatory biomarkers (p ≤ 0.05), including macrophage markers (CD11c, CD68, CD86, CD127), TLRs (TLR8, TLR10), IRF3, pro-inflammatory cytokines (TNF-α, IL-12, IL-18), and chemokines (CXCL8, CCL3, CCL5, CCL15, CCL20). Notably, in this cohort, IL-23 expression correlated inversely with plasma adiponectin. In conclusion, adipose IL-23 may be an inflammatory biomarker for disease progression in people with high LDL-c.


Assuntos
Hiperlipidemias , Subunidade p19 da Interleucina-23/metabolismo , Síndrome Metabólica , Adiponectina/metabolismo , Tecido Adiposo/metabolismo , Biomarcadores/metabolismo , Quimiocinas/metabolismo , Colesterol/metabolismo , HDL-Colesterol , LDL-Colesterol/metabolismo , Estudos Transversais , Citocinas/metabolismo , Humanos , Hiperlipidemias/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Interleucina-12/metabolismo , Interleucina-18/metabolismo , Interleucina-23/metabolismo , Síndrome Metabólica/metabolismo , Receptor 8 Toll-Like/metabolismo , Triglicerídeos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
Cells ; 11(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36139454

RESUMO

In obesity, macrophage activation and infiltration in adipose tissue (AT) underlie chronic low-grade inflammation-induced insulin resistance. Although dectin-1 is primarily a pathogen recognition receptor and innate immune response modulator, its role in metabolic syndromes remains to be clarified. This study aimed to investigate the dectin-1 gene expression in subcutaneous AT in the context of obesity and associated inflammatory markers. Subcutaneous AT biopsies were collected from 59 nondiabetic (lean/overweight/obese) individuals. AT gene expression levels of dectin-1 and inflammatory markers were determined via real-time reverse transcriptase-quantitative polymerase chain reaction. Dectin-1 protein expression was assessed using immunohistochemistry. Plasma lipid profiles were measured by ELISA. AT dectin-1 transcripts and proteins were significantly elevated in obese as compared to lean individuals. AT dectin-1 transcripts correlated positively with body mass index and fat percentage (r ≥ 0.340, p ≤ 0.017). AT dectin-1 RNA levels correlated positively with clinical parameters, including plasma C-reactive protein and CCL5/RANTES, but negatively with that of adiponectin. The expression of dectin-1 transcripts was associated with that of various proinflammatory cytokines, chemokines, and their cognate receptors (r ≥ 0.300, p ≤ 0.05), but not with anti-inflammatory markers. Dectin-1 and members of the TLR signaling cascade were found to be significantly associated, suggesting an interplay between the two pathways. Dectin-1 expression was correlated with monocyte/macrophage markers, including CD16, CD68, CD86, and CD163, suggesting its monocytes/macrophage association in an adipose inflammatory microenvironment. Dectin-1 expression was independently predicted by CCR5, CCL20, TLR2, and MyD88. In conclusion, dectin-1 may be regarded as an AT biomarker of metabolic inflammation in obesity.


Assuntos
Adiponectina , Quimiocina CCL5 , Lectinas Tipo C , Adiponectina/metabolismo , Tecido Adiposo/metabolismo , Biomarcadores/metabolismo , Proteína C-Reativa/metabolismo , Quimiocina CCL5/metabolismo , Citocinas/metabolismo , Humanos , Inflamação/patologia , Lectinas Tipo C/metabolismo , Lipídeos , Fator 88 de Diferenciação Mieloide/metabolismo , Obesidade/metabolismo , RNA/metabolismo , DNA Polimerase Dirigida por RNA/metabolismo , Receptor 2 Toll-Like/metabolismo
13.
Cells ; 11(17)2022 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-36078084

RESUMO

The C-type lectin receptors (CLRs) Dectin-1 and Dectin-2 are involved in several innate immune responses and are expressed mainly in dendritic cells, monocytes, and macrophages. Dectin-1 activation exacerbates obesity, inflammation, and insulin resistance/type 2 diabetes (T2D). However, the role of Dectin-2 is not clear in T2D. This study aims to evaluate the expression and function of Dectin-2 in peripheral blood mononuclear cells (PBMCs) isolated from diabetic patients and non-diabetic controls. Flow-cytometry and qRT-PCR were performed to evaluate the expression of Dectin-2 in different leukocyte subpopulations isolated from T2D patients (n = 10) and matched non-diabetic controls (n = 11). The functional activity of Dectin-2 was identified in PBMCs. CRP, IL-1ß, and TNF-α concentrations were determined by ELISA. siRNA transfection and Western blotting were performed to assess p-Syk and p-NF-kB expression. siRNA transfection was performed to knock down the gene of interest. Our results show that Dectin-2 expression was the highest in monocytes compared with other leukocyte subpopulations. The expression of Dectin-2 was significantly increased in the monocytes of T2D patients compared with non-diabetic controls. Dectin-2 expression positively correlated with markers of glucose homeostasis, including HOMA-IR and HbA1c. The expression of inflammatory markers was elevated in the PBMCs of T2D patients. Interestingly, SOCS3, a negative regulator of inflammation, was expressed significantly lowlier in the PBMCs of T2D patients. Moreover, SOCS3 expression was negatively correlated with Dectin-2 expression level. The further analysis of inflammatory signaling pathways showed a persistent activation of the Dectin-2-Syk-NFkB pathway that was instigated by the diminished expression of SOCS3. Dectin-2 activation failed to induce SOCS3 expression and suppress subsequent inflammatory responses in the PBMCs of diabetic patients. siRNA-mediated knockdown of SOCS3 in PBMCs displayed a similar inflammatory phenotype to diabetic PBMCs when exposed to Dectin-2 ligands. Altogether, our findings suggest that elevated Dectin-2 and its relationship with SOCS3 could be involved in the abnormal immune response observed in T2D patients.


Assuntos
Diabetes Mellitus Tipo 2 , Lectinas Tipo C , Leucócitos Mononucleares , Proteína 3 Supressora da Sinalização de Citocinas , Biomarcadores/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Inflamação/metabolismo , Leucócitos Mononucleares/metabolismo , NF-kappa B/metabolismo , RNA Interferente Pequeno/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
14.
J Inflamm Res ; 15: 4291-4302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923906

RESUMO

Background: Overexpression of CCL2 (MCP-1) has been implicated in pathogenesis of metabolic conditions, such as obesity and T2D. However, the mechanisms leading to increased CCL2 expression in obesity are not fully understood. Since both IFN-γ and LPS levels are found to be elevated in obesity and shown to be involved in the regulation of metabolic inflammation and insulin resistance, we investigated whether these two agents could synergistically trigger the expression of CCL2 in obesity. Methods: Monocytes (Human monocytic THP-1 cells) were stimulated with IFN-γ and LPS. CCL2 gene expression was determined by real-time RT-PCR. CCL2 protein was determined by ELISA. Signaling pathways were identified by using epigenetic inhibitors and STAT1 siRNA. Acetylation of H3K27 was analyzed by Western blotting. The acetylation level of histone H3K27 in the transcriptional initiation region of CCL2 gene was determined by ChIP-qPCR. Results: Our results show that the co-incubation of THP-1 monocytes with IFN-γ and LPS significantly enhanced the expression of CCL2, compared to treatment with IFN-γ or LPS alone. Similar results were obtained using primary monocytes and macrophages. Interestingly, IFN-γ priming was found to be more effective than LPS priming in inducing synergistic expression of CCL2. Moreover, STAT1 deficiency significantly suppressed this synergy for CCL2 expression. Mechanistically, we showed that IFN-γ priming induced acetylation of lysine 27 on histone 3 (H3K27ac) in THP-1 cells. Chromatin immunoprecipitation (ChIP) assay followed by qRT-PCR revealed increased H3K27ac at the CCL2 promoter proximal region, resulting in stabilized gene expression. Furthermore, inhibition of histone acetylation with anacardic acid suppressed this synergistic response, whereas trichostatin A (TSA) could substitute IFN-γ in this synergy. Conclusion: Our findings suggest that IFN-γ, in combination with LPS, has the potential to augment inflammation via the H3K27ac-mediated induction of CCL2 in monocytic cells in the setting of obesity.

15.
J Immunol ; 209(4): 731-741, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35896337

RESUMO

IL-6 is elevated in obese individuals and participates in the metabolic dysfunction associated with that condition. However, the mechanisms that promote IL-6 expression in obesity are incompletely understood. Because elevated levels of palmitate and LPS have been reported in obesity, we investigated whether these agents interact to potentiate IL-6 production. In this study, we report that LPS induces higher levels of IL-6 in human monocytes in the presence of palmitate. Notably, the priming effect of palmitate is associated with enhanced p300 binding and transcription factor recruitment to Il6 promoter regions. Gene silencing of p300 blocks this action of palmitate. RNA polymerase II recruitment was also enhanced at the Il6 promoter in palmitate/LPS-exposed cells. Acetylation levels of H3K9 and H3K18 were increased in monocytes treated with palmitate. Moreover, LPS stimulation of palmitate-treated cells led to increased levels of the transcriptionally permissive acetylation marks H3K9/H3K18 in the Il6 promoter compared with LPS alone. The effect of palmitate on LPS-induced IL-6 production was suppressed by the inhibition of histone acetyltransferases. Conversely, histone deacetylase inhibitors trichostatin A or sodium butyrate can substitute for palmitate in IL-6 production. Esterification of palmitate with CoA was involved, whereas ß-oxidation and ceramide biosynthesis were not required, for the induction of IL-6 and H3K9/H3K18 acetylation. Monocytes of obese individuals showed significantly higher H3K9/H3K18 acetylation and Il6 expression. Overall, our findings support a model in which increased levels of palmitate in obesity create a setting for LPS to potentiate IL-6 production via chromatin remodeling, enabling palmitate to contribute to metabolic inflammation.


Assuntos
Lipopolissacarídeos , RNA Polimerase II , Acetilação , Histonas/metabolismo , Humanos , Interleucina-6/metabolismo , Lipopolissacarídeos/metabolismo , Obesidade , Palmitatos/farmacologia , RNA Polimerase II/metabolismo
16.
Biomedicines ; 9(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34829801

RESUMO

Atherosclerosis is a chronic degenerative disorder characterized by lipid-dense plaques and low-grade inflammation affecting arterial walls. Foamy macrophages are important in the formation of atherosclerotic plaques and the induction of low-grade inflammation. The presence of lipid-laden macrophages has occurred in infections caused by opportunistic pathogens. Candida albicans is the major cause of candidiasis in immunocompromised patients, including those with diabetes mellitus. However, the role played by C. albicans in macrophage foaming and the associated inflammation is poorly understood. We investigated whether C. albicans induces foaming along with inflammation in macrophages and, if so, by which mechanism(s). We incubated THP-1 macrophages with heat-killed C. albicans (HKCA). HKCA-induced lipid accumulation in macrophages along with increased expression of inflammatory markers, including CD11b and CD11c or expression and secretion of IL-1ß. HKCA also increased the expression of PPARγ, CD36, and FABP4 in macrophages. Mechanistically, we found that the foamy and inflammatory macrophage phenotype induced by HKCA requires FABP4 because disruption of FABP4 in macrophages either by chemical inhibitor BMS309404 or small interfering RNA (siRNA) abrogated foam cell formation and expression of inflammatory markers CD11b, CD11c, and IL-1ß. Furthermore, HKCA-treated macrophages displayed high expression and secretion of MMP-9. Inhibition of FABP4 resulted in suppression of HCKA-induced MMP-9 production. Overall, our results demonstrate that C. albicans induces foam cell formation, inflammation, and MMP-9 expression in macrophages via the upregulation of FABP4, which may constitute a novel therapeutic target for treating C. albicans-induced atherosclerosis.

17.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638857

RESUMO

IL-8/MCP-1 act as neutrophil/monocyte chemoattractants, respectively. Oxidative stress emerges as a key player in the pathophysiology of obesity. However, it remains unclear whether the TNF-α/oxidative stress interplay can trigger IL-8/MCP-1 expression and, if so, by which mechanism(s). IL-8/MCP-1 adipose expression was detected in lean, overweight, and obese individuals, 15 each, using immunohistochemistry. To detect the role of reactive oxygen species (ROS)/TNF-α synergy as a chemokine driver, THP-1 cells were stimulated with TNF-α, with/without H2O2 or hypoxia. Target gene expression was measured by qRT-PCR, proteins by flow cytometry/confocal microscopy, ROS by DCFH-DA assay, and signaling pathways by immunoblotting. IL-8/MCP-1 adipose expression was significantly higher in obese/overweight. Furthermore, IL-8/MCP-1 mRNA/protein was amplified in monocytic cells following stimulation with TNF-α in the presence of H2O2 or hypoxia (p ˂ 0.0001). Synergistic chemokine upregulation was related to the ROS levels, while pre-treatments with NAC suppressed this chemokine elevation (p ≤ 0.01). The ROS/TNF-α crosstalk involved upregulation of CHOP, ERN1, HIF1A, and NF-κB/ERK-1,2 mediated signaling. In conclusion, IL-8/MCP-1 adipose expression is elevated in obesity. Mechanistically, ROS/TNF-α crosstalk may drive expression of these chemokines in monocytic cells by inducing ER stress, HIF1A stabilization, and signaling via NF-κB/ERK-1,2. NAC had inhibitory effect on oxidative stress-driven IL-8/MCP-1 expression, which may have therapeutic significance regarding meta-inflammation.


Assuntos
Quimiocina CCL2/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Peróxido de Hidrogênio/farmacologia , Interleucina-8/genética , Monócitos/efeitos dos fármacos , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Tecido Adiposo/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Quimiocina CCL2/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-8/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células THP-1
18.
Nat Sci Sleep ; 13: 1225-1241, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335063

RESUMO

BACKGROUND: Efficient sleep duration and its quality are increasingly recognized as important contributors for maintaining normal body weight. However, lifestyle and social structure within the Arab-gulf region differ compared to those in the western world. This study was specifically conducted in Kuwait's population to investigate the link between sleep quality (SQ) and obesity in the absence of sleep apnea (SA) onset. METHODS: SQ was measured by the Pittsburgh Sleep Quality Index (PQSI) in 984 participants, then verified in 60 individuals including 20 lean (Body mass index/BMI: 18.5-24.9 kg/m2), 20 overweight (BMI: 25-29.9 kg/m2) and 20 obese (BMI: ≥30 kg/m2) through actigraph worn over the right-hip for 7 consecutive days to characterize their sleep-wake cycle, rest-activity, and physical activity. Blood samples were collected for metabolic markers. RESULTS: 59.6% of participants reported a PSQI score higher than 5, with 57.6% of the participants reporting less than 6 hours of sleep per day. The data show that both SQ and sleep duration are considered inadequate in comparison to the international SQ standards. We found a significant association between SQ and obesity independent of age and sex. Actigraph data further supported the independent association of sleep duration on BMI within the population (p < 0.001). Additionally, total sleep time (TST) was found to significantly correlate with several other metabolic factors including diastolic blood pressure, elevated resting heart rate (RHR), triglycerides, total cholesterol, homeostatic model assessment for insulin resistance (HOMA-IR), C-peptide, and C-Reactive Protein (CRP) secretion. Further multiple-regression analysis showed a significant independent association between blood pressure (p < 0.03), HOMA-IR (p < 0.04), and C-peptide (p < 0.3) and sleep duration. CONCLUSION: These findings suggest that sleep deprivation and disturbance could be indirect factors involved in the development of not only obesity in Kuwait but also other metabolic syndromes such as type 2 diabetes.

19.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299302

RESUMO

Short-chain fatty acid (SCFA) acetate, a byproduct of dietary fiber metabolism by gut bacteria, has multiple immunomodulatory functions. The anti-inflammatory role of acetate is well documented; however, its effect on monocyte chemoattractant protein-1 (MCP-1) production is unknown. Similarly, the comparative effect of SCFA on MCP-1 expression in monocytes and macrophages remains unclear. We investigated whether acetate modulates TNFα-mediated MCP-1/CCL2 production in monocytes/macrophages and, if so, by which mechanism(s). Monocytic cells were exposed to acetate with/without TNFα for 24 h, and MCP-1 expression was measured. Monocytes treated with acetate in combination with TNFα resulted in significantly greater MCP-1 production compared to TNFα treatment alone, indicating a synergistic effect. On the contrary, treatment with acetate in combination with TNFα suppressed MCP-1 production in macrophages. The synergistic upregulation of MCP-1 was mediated through the activation of long-chain fatty acyl-CoA synthetase 1 (ACSL1). However, the inhibition of other bioactive lipid enzymes [carnitine palmitoyltransferase I (CPT I) or serine palmitoyltransferase (SPT)] did not affect this synergy. Moreover, MCP-1 expression was significantly reduced by the inhibition of p38 MAPK, ERK1/2, and NF-κB signaling. The inhibition of ACSL1 attenuated the acetate/TNFα-mediated phosphorylation of p38 MAPK, ERK1/2, and NF-κB. Increased NF-κB/AP-1 activity, resulting from acetate/TNFα co-stimulation, was decreased by ACSL1 inhibition. In conclusion, this study demonstrates the proinflammatory effects of acetate on TNF-α-mediated MCP-1 production via the ACSL1/MAPK/NF-κB axis in monocytic cells, while a paradoxical effect was observed in THP-1-derived macrophages.


Assuntos
Acetatos/farmacologia , Quimiocina CCL2/biossíntese , Ácidos Graxos Voláteis/farmacologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Acetatos/administração & dosagem , Quimiocina CCL2/genética , Coenzima A Ligases/antagonistas & inibidores , Coenzima A Ligases/metabolismo , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Ácidos Graxos Voláteis/administração & dosagem , Humanos , Sistema de Sinalização das MAP Quinases , Modelos Biológicos , Monócitos/imunologia , NF-kappa B/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células THP-1 , Triazenos/farmacologia , Fator de Necrose Tumoral alfa/administração & dosagem , Fator de Necrose Tumoral alfa/farmacologia
20.
Sci Rep ; 11(1): 13883, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230580

RESUMO

The role of leukocyte inflammatory markers and toll like receptors (TLRs)2/4 in pathologies associated with elevated resting heart rate (RHR) levels in healthy obese (HO) individuals is not well elucidated. Herein, we investigated the relationship of RHR with expression of leukocyte-inflammatory markers and TLRs in HO individuals. 58-obese and 57-lean participants with no history of a major medical condition, were recruited in this study. In HO individuals, the elevated-RHR correlated positively with diastolic blood pressure, cholesterol, pro-inflammatory monocytes CD11b+CD11c+CD206- phenotype (r = 0.52, P = 0.0003) as well as with activated T cells CD8+HLA-DR+ phenotype (r = 0.27, P = 0.039). No association was found between RHR and the percentage of CD16+CD11b+ neutrophils. Interestingly, elevated RHR positively correlated with cells expressing TLR4 and TLR2 (CD14+TLR4+, r = 0.51, P ≤ 0.0001; and CD14+TLR2+, r = 0.42, P = 0.001). TLR4+ expressing cells also associated positively with the plasma concentrations of proinflammatory or vascular permeability/matrix modulatory markers including TNF-α (r = 0.36, P = 0.005), VEGF (r = 0.47, P = 0.0002), and MMP-9 (r = 0.53, P ≤ 0.0001). Multiple regression revealed that RHR is independently associated with CD14+TLR4+ monocytes and VEGF. We conclude that in HO individuals, increased CD14+TLR4+ monocytes and circulatory VEGF levels associated independently with RHR, implying that RHR monitoring could be used as a non-invasive clinical indicator to identify healthy obese individuals at an increased risk of developing inflammation and cardiovascular disease.


Assuntos
Doenças Cardiovasculares/fisiopatologia , Frequência Cardíaca/fisiologia , Inflamação/fisiopatologia , Obesidade/fisiopatologia , Descanso/fisiologia , Adulto , Biomarcadores/sangue , Doenças Cardiovasculares/sangue , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Leucócitos/patologia , Modelos Lineares , Masculino , Monócitos/metabolismo , Obesidade/sangue , Fenótipo , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...